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A new probability distribution for the structure factor signs in centrosymmetrical crystals is proposed 
and discussed; it is related as follows to the probability distributions previously given by Hauptman & 
Karle and Bertaut. If P(A1A2 • • • Am) is the joint elementary probability that the A, normalized values 
of the observed structure factors are comprised between A, and A, + dA,, the proposed joint probability 
distribution of the s~-signs is of the kind P(sls2 • • " S m ) = g .  exp [H. P(A1A2 • • • A m ) ] ,  where both K 
and H are proper constant values; a useful substitution proves to be A,=s,]A,], since the moduli of A, 
are experimentally known. The proposed probability distribution is also related to the sign probability 
distributions of structure factor products (Kitaigorodskii, Woolfson, Cochran & Woolfson) in the sense 
that it is to be regarded as a generalization of them. 

From the above expression the probability P(s, +) that the sign of A, is positive is derived; it contains 
many new contributions with respect to the previously known expressions. Another way of application 
of the proposed joint probability distribution is then discussed: it allows the derivation of the most 
probable set of signs of any number whatever of properly selected reflexions. 

1. Introduction 

The problem of the direct solution of a crystal structure 
by inequality or probability relations among phases has 
received very deep consideration in the last two decades. 
We will particularly recall here the important contri- 
bution made by Hauptman & Karle (1953) in which, 
for the first time, the phase probability relations be- 
tween all the structure factors were jointly considered. 
The theory put forward by these authors includes the 
results previously attained by Harker & Kasper, and 
gives rise to some new probability contributions for the 
signs of the structure factors in a centrosymmetrical 
crystal, which take into account the magnitudes of 
other structure factors only. Subsequently Bertaut 
(1955), by an elegant mathematical procedure, gave a 
general expression to the joint probability distribution 
of structure factors and atomic coordinates in a centro- 
symmetrical crystal; it may be utilized either to deduce 
the results given by Hauptman & Karle or to derive in- 
formation about the most probable distribution of 
atoms. Both Hauptman & Karle and Bertaut obtain 
probability relations between structure factor signs 
from a completely general probability distribution of 
structure factor values. 

A different approach is adopted by, among others, 
Kitaigorodskii (1953,1954), Woolfson (1954) and Coch- 
ran & Woolfson (1955). It is substantially based upon 
the derivation of probability distributions of some 
structure factor products, measuring the probability 
that the corresponding products between observed 
quantities are positive. 

In § 3 a new probability distribution of structure 
factor signs will be given, which may be considered as 
a generalization of the last approach outlined above. 

The final expression of the sign probability distribution 
[see equation (10)] shows some resemblance to the 
expression (III-1) given by Bertaut (1955), in the sense 
that all the terms contained in the summation reported 
in the latter expression have their correspondent in 
(10); nevertheless, the mathematical dependence of the 
total probability on these terms is different because, 
while it is of a linear type in Bertaut's expression, it 
becomes of an exponential type in (10). 

In § 4 some considerations about the above result 
are discussed, while in § 5 some general relationships 
are derived both for obtaining the sign probability of 
a single structure factor [expressions (16) and (18)] and 
for obtaining the most probable signs of a limited set 
of structure factors [expressions (23) and (25)]. Ex- 
amples of application of the above formulae are being 
studied in our laboratory. 

2. Notation 

The following symbols are largely derived from the 
notation of Bertaut (1955, 1958): 
n is the number of atoms per unit cell; 
xi is a vector specifying the position of the jth atom 

inside the cell; 
H, K, L . . .  are vectors in reciprocal space. They 

specify different reciprocal lattice nodes (hkl); 
Fn is the observed structure factor corresponding to 

the H reciprocal vector; 

~j(H)  = f i ( H ) /  (H) is a normalized atomic factor, 

f i ( H )  being the corresponding atomic factor; 
if ¢(xl, x2, . . .  xn) is a given function of the atomic 

coordinates, • means the corresponding average 
value over the whole domain of the x: variables; 
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nl2 
EH(Xl, x2 . . .  xn )=2  Z ~0~(H)cos 2 n i l .  x; is a calc- 

j = l  
ulated structure factor, in normalized form. Its aver- 
age squared value is unity: E~  = 1 ; 

~ ( H )  is the product qb'(H) cos 2 n i l .  x~; 
AH is an observed (or observable) structure factor in 

normalized form. It represents a value that the EH 
function may assume; 

/ 

the relation between AH and FH is" AH=FH/V  Z .1"~; 
j = l  

5(x) is the Dirac function, which is defined as having 
zero value for x ¢  0, and an infinite value for x = 0, 

so that: I ~ ( x ) d x = l ;  

SH is the sign of An: AH=SHIAnl. 

In this paper the (H, K, L . . . )  indices of structure 
factors will be frequently substituted by numerical in- 
dices (i, j ,  l . . . )  which refer to their progressive num- 
bers in a given order. 

3. A new probability distribution 
of the structure factor signs 

Bertaut (1955, expression I-6) has given the following 
expression to the joint probability distribution of struct- 
ure factors and atomic coordinates in centrosymmetric- 
al structures: 

P(Ab A2 . . .  A m ;  Xl,  x 2 . . .  x n )  

--d;(A1-E1). d;(A2-E2) . . .  c~(Am-Em) (1) 
where 

P(AIA2 . . .  Am; 
Xl ,  X2 . . .  xn)dAldA2 . . .  dAmdxldX2 . . .  dxn 

is the elementary joint probability that the n vector~ 
lie between x~ and x j +  dxj, and the m values A~ take 
values comprised between As and Aj + dAj. 

By expressing the O(x) function in a suitable math- 
ematical form, then expanding in series and integrat- 
ing over the space coordinates, Bertaut (1955, expres- 
sion III-1) has a~rived at the following expression for 
the probability distribution of the m structure factors, 
which is substantially similar to the results previously 
obtained by Hauptman & Karle (1953): 

P(Ab A 2 . . .  Am) = (V~)  -m . exp [-½(A~+ . . .  + 

A~)]{1 + Z'I ½Ae(A 2 -  1 ) E e ( E ~ -  1) 
k# l  

+ ~SzA~AtAmEkEtEm + Z 3 ½AkAt(A2m- 1)] 
k#lCm k ~ l # m  

E~Ez(E~ - 1) + . . . } .  (2) 

In all the centrosymmetrical space groups the terms 
contained in Z'l are different from zero when H(ED = 
2H(Ea); the terms in Z2 when H(Ee) + H(E0 + H(Em) = 
0, and so on. Depending upon the symmetry of the 
various space groups, other linear relationships may 

k 

where* 

hold among the indices of the structure factors con- 
tained in a non-zero term of (2). 

Using (2), and referring for sake of simplicity to the 
centrosymmetrical space group P i ,  the probability of 
having a positive sign for the general structure factor 
with reciprocal vector H is" 

P(A +) = ½+½ {½ IAnl (A~/2- 1) EH(E~/2 - 1) 

+ [AHI Z AnAH+nEHEKEH+K + . . . } .  (3) 
K(¢H) 

Moreover, remembering the definition (1) of the joint  
probability distribution, we see that, given a set of m 
moduli IAil, all the sets of corresponding signs which 
are not compatible with a given distribution of atomic 
coordinates have zero probability, so that the corres- 
ponding expression (2) must be zero. Let us assume 
that only the real atomic distribution may give rise to 
the observed moduli IAil; in other words, let us as- 
sume that no structure exists which is related by 
homometry to the real one. The summation in brackets 
in (2) may be written in the following way, putting into 
evidence the structure factor signs" 

S{si} = 1+ Za ½s~lAkl(A~-  1 ) E k ( E ~ - I )  
k¢ l  

+ .$2 slcSlSm [AkAtAm] EkEzEm 
k¢lCm 

+ Z3 ½skszlATcAt] (AZ~-I )EkEt (E~-I )  + . . .  
k ~ l ¢ m  

= 1 + Z1 skak+ X2 SlcSZSm akzm + X3 SlcSz alcz + . . .  
k~ l ¢m  k ¢ l  

(4) 

ak=~-]A~] X ( A ~ - I ) E ~ ( E ~ - I )  
l (~k)  

aktm = ]AkAzAra] EkEzEm 

ata = kIAeAz] Z ( A ~ - I ) E k E z ( E ~ - I ) .  
m (~k:~/) (4') 

For what precedes, (4) must have a non-zero (pos- 
itive) value only when the set of signs {si} coincides 
with the correct set. This allows us to state the follow- 
ing theorem: 

Theorem I: Apart from the possible existence of  
homometric structures, the correct signs (sa, s2 . . .  sin) 
of m structure factors under consideration may be ob- 
tained by maximizing the summation S{si} (see (4)) over 
all the possible sets of  signs. 

Now let us consider the other class of sign probab- 
ility relationships, namely those derived from the prob- 
ability distributions of structure factor products. In 

* Considering the last expression given in (4) for S{sj} it 
should be remembered that other terms are comprised in ae, 
ae~m, akz.., which are not indicated above. For instance, 
other terms to be included in ae are (see Bertaut, 1955): 
ak'=klA~l Z (At 2 -  1)(Am 2 -  1)Elc(EI 2 -  1)(Era 2 -  1). H o w e v e r ,  

lCm(¢k) 
for sake of simplicity, in the following we shall always neglect 
such terms, confining ourselves to the expressions of al:, akzm, 
aez given in (4"). 
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particular, Woolfson (1954) and Cochran & Woolfson 
(1955) have derived the following expression for the 
probability P(s +) that the sign of the AH structure 
factor is positive (space group P i ) ,  when the atomic 
weights are more or less the same and the number of 
independent atoms is sufficiently large: 

P(s +) = ½+½ ThaH = exp aH 
exp aH + exp (--all) (5) 

where ag  may be either: 

a~ ) =½IAHI(A~n- -1 )EH(E~/2-1)  , or: 

a~).! = IAH] S, A1,;AH+KEHEKEH+K . (5') 
K(¢H) 

By developing in series T h x = x - x 3 / 3  + . . .  and stop- 
ping at the first term, we may see some analogy be- 
tween the expressions (3) and (5). An advantage given 
by (5) is that it always gives probability values com- 
prised between 0 and 1, while in general (3) does not, 
at least if the series is not pushed too far. 

Now the question arises: may the two diffelent 
forms of the expression (5), given (5'), be related 
among themselves? We will first remember that (5) is 
derived from probability distributions of the kind: 

P(s+) = K exp a l l ,  (6) 

where K is a normalizing factor, which is evaluated by 
imposing the condition" P(s +) + P(s~)  = 1. Indicating 
by/£1 and K2 the normalization factors corresponding 
to a~ ) and to a~ ) respectively, we may write: 

PI(s+) = K1 exp a~ ) ; P2(s +) = K2 exp a~ ) . (7) 

But, since there must be only one probability distribution 
for  the sign o f  AH, the unique way of reconciling the 
expressions (7) is to write: 

P ( s + ) = K  ' exp a~ ) . exp a~ ) = K '  exp (a~) + a ~  )) (8) 

where K'  is a new normalization factor, whose value is: 

{exp (a~) + a~ )) + exp ( -  a~ ) - a~ ))}-a. 

Therefore (8) reduces to: 

P(s  +) = ½+½Th (a~) + a ~  )) = ½+ 

+ ½Th {½[AH[ (A~/2-  1) E H ( E ~ n -  1)+ 

+ ] A H I  if, A K A H + K E H E K E H + K }  • (9) 
K(¢H)  

Comparison of expressions (3) and (9) shows an inter- 
esting analogy between them. Namely, the argument 
of Th in (9) coincides with the first terms of the ex- 
pression in brackets in (3). Since in deriving (9) we 
have not exhausted all possible sign probability rel- 
ations which are contained in (3) - for instance we have 
not taken into account the sign probability distrib- 
utions of the products contained in "3 [see (2)] - we 
will try to find a more general sign probability distrib- 
ution, from which (9) could be derived as a particular 
case. 

The probability relationship (3) is derived from the 
more general expression (2) in which all the observed 
structure factors are considered jointly; it regards both 
the signs and the amplitudes of the structure factors. 
However, the more general distribution from which (9) 
is to be derived should regard only the signs of the 
structure factors, not their amplitudes, in much the 
same way as (5), from which (9) has been derived, 
regards only the sign of AH (this last statement may be 
proved as shown in Appendix I). Therefore, develop- 
ing the analogy between (3) and (9), and remembering 
(2), we propose the following expression for the joint 
probability distribution of the signs (sl, s2 . . .  sin) of m 
structure factors under consideration (A~ = s~lA~[): 

e ( s l ,  s2 . . .  sin) = e {st} = K.  exp {1 

+ $1 ½ s e l A e l ( A ~ - l ) E k ( E ~ - l )  
kct 

+ ~z slcstsm [AkAtAm[ EkE~Em 
k¢ lCm 

+ Z3 ½ s e s z ] A ~ A z l ( A ~ - l ) E k E z ( E ~ - - l )  + . . . }  
k¢l~rn 

= K.  exp S{s~}. [compare expression (4)] (10) 

The normalization constant K may be evaluated by 
imposing the condition that the sum of the probabilities 
P{s~} over all the possible sets of signs is equal to 
unity: 

Z" P{s~}=l ;  K = [ X e x p S { s ~ } ]  -x .  (11) 
{st} {si} 

From the above, it is clear that the expression (10) 
has been introduced on semi-empirical grounds. In the 
next section we will discuss two arguments that strong- 
ly support the reliability of (10). 

4. Two considerations on formula (10) 

Let us first consider the argument of the exponential 
in (10). The general form of the argument is expressed 
by [see Bertaut, 1955 (1-18)]: 

1 
X(p l ,  . . .  pro) = 

Pl! . . .  Pro! 

xHpl(A1)  . . .  Hpra(Am)Hpl(E1) . . .  Hpra(Em) (12) 

where Hp(z) is the Hermite polynomial of pth order 
[see Appendix II, (II-1) and (II-2)], with p an integral 
number. We have shown in Appendix II that, under 
the hypotheses that the number of independent atoms 
is sufficiently large, and that their weights are approx- 
imately equal, the following gaussian probability dis- 
tribution applies: 

1 [ 
P[Hpl(A1) . . .  Hpm(Ara)]_ 2 ~ D  × exp - ½ 

{Hpl(A1) . . . Hpm(Am)-Hp l (E1)  . . . Hpm(Em)} z] (13/ 
0 2 

where D 2 (mean square deviation)=pl!p2! . . .  p m !  
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Following the same fines discussed in Appendix I, it 
follows from (13), remembering (12), that: 

Pvx. . .v , , , ( s t . . .Sm)=Kv~. . .~ .  exp { X ( p I . . . p r o ) } .  (14) 

Now, under the above hypotheses, by the general 
criterion of multiplying probabilities, we get from the 
above [expression (15)]: 

s~,+a . . .  sm)-P(s~ ,  s2 . . .  s,-t, - ,  

s~+a, . . .  Sra)]. (17) 

Remembering from (10) that ai~t.., t is the coefficient 
of the sign product (s,sest . . .  st), and introducing the 
notation e, et... t = Th(a,~t... t), we have shown in Ap- 
pendix IV that (17) reduces to [expression (18)]: 

P ( s + ) -  P(s~ ' )= 

( ~ +  Z' ~ 0 +  X ~ e ~ O ~ +  22 ~ 0 ~ +  Z" ~ t ~ +  . . . ) +  
j ( # i )  j # k ( # i )  j # k ( # i )  j # k ( # i )  

+ ( X s j~j~ + E s j~ j  + E s jsk~je  + X s j a ~ e  + . . . )  
j (  ~ i )  j (  # i )  j # k (  ¢ O  j ~ k (  # i )  

+ ( £ s f ~  + E sjsesz~m + E sjsx~jk + E s~iccq~ + . . . )  
j # k # l  j # k  j # k  

P(sl . . .  sin) = H P ~ o l . . . ~ O m ( 8 1  . . .  S i n )  
Pt  • • • Pro=O,  oo 

= K.  exp { X X ( p l . . .  Pro)} 
Pl • • • Pro=O, ¢° 

= K.  exp {S(s~ . . .  sin)} (15) 
so that we have in this way obtained expression (10). 

There is still another consideration which further 
supports the reliability of (10), and seems to remove 
any condition for its general validity. We have already 
shown, in discussing expression (4) (see page 950) that 
S{s~} is different from zero, apart from particular 
cases, only when {s~} coincides with the real set of 
signs. In Appendix III we have proved that in such a 
case S{s~} is at least of the order of 2 m, where in is 
the number of structure factors under consideration. 
This means that, even when m is very small (3 or 4), 
the probability P{s~} of the real set of signs is practic- 
ally 1, and zero otherwise. This seems to be a strong 
argument not only for the approximate validity of (10), 
but even for its exact validity; in fact the above con- 
clusions are not limited by any condition about the 
number or the weights of the atoms, in much the same 
way as expressions (1)-(3) are not subjected to these lim- 
itations. 

In the following section we will discuss two distinct 
possibilities of applying the probability relationship 
(10). 

5. General applications of formula (I0) 

(a) We will here give a general expression for the prob- 
ability P(s +) that the sign s~ is positive, some of the 
other signs being known, but not necessarily. Let us 
first write down the following relationship: 

P(s?) = ½[e (s, +) + e (si-)] +½I f ( s? ) -  e (s,)] 
=½+½[P(s? ) -P ( sT ) ]  (16) 

since P ( s + ) + P ( s T )  must always be unity. We will 
evaluate P ( s + ) - P ( s i  -) in the following way, suppos- 
ing the signs sl, s2 . . .  sv to be known a priori (i>p)" 

P ( s ? ) - P ( s T )  = 

= E X . . .  X . . .  E [P (sl, sz . . .  s~_~, + ,  
8 p + l ,  . . • 8i-1, 5i+1 • • • $m = + , ~  

08) 

Both the numerator and the denominator of (18) have 
been divided into two parts by parentheses; in the first 
part there are terms not depending on any known 
sign, the opposite in the second part. Every product in 
the numerator has the following property: every index 
(j, k . . . )  which appears both in the cds and in the s's 
appears an even number of times, except the index i, 
which refers to the structure factor whose sign is 
wanted. In the denominator all the indices appear an 
even number of times in any product: the denominator 
may therefore be derived by summing up all possible 
products of ~'s and s's which possess this property. Of 
course in all the summations the indices applied to the 
signs must run only from 1 to p, while the other indices 
run from 1 to m. 

The various products which appear both in the 
numerator and in the denominator of (18) may be 
given a simple probabilistic interpretation. If we con- 
sider, as an approximation of zero order, only the first 
term in both sides of the fraction, we obtain, remem- 
bering (16): 

P0(s +) = ~ + ½~l = k + ½Thai 
=½+½Th{½lAnl(A~/2- 1)En(E~ m - l ) }  (19) 

apart from terms of higher order which should be com- 
prised in a~ (see footnote page 950). In (19) we have 
assumed that we are dealing with the space group P T 
and also that the ith structure factor corresponds to 
the reciprocal vector H. We have thus derived from 
(18) one of the expressions (5). 

Let us go on to examine the meaning of the next 
terms in the numerator of (18), for instance X ~ j~ .  

j ( ~  i) 

From (19) it follows that ~j is equal to {P0(s+) - 
P0(s)-)}, when no other sign relationship is considered: 
we will therefore call ~3" the zero-order contribution to 
the sign of &.. In a completely analogous way ~ j  is the 
zero-order contribution to the sign of the product 
A~. A~. 

Indicating by Pj~(s~) the probability of having a 
positive or negative sign for A~ derivable from joint 
consideration of the probable signs of A~ and A~, the 
following relationships apply: 
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P~,(s+) = Po(S+) . Po(s,s +) + Po(s[') . Po(s,s'i-) 
Pj , (sF)=Po(s+) . Po(s, s i - )+ Po(s-i" ) . Po(s,s+) , (20) 

whence, subtracting the corresponding sides of these 
two equations" 

Pj,(s+) - P~,(s-[-) 
=[e0(s+) - P0(sT) ] [eo(s,s+) - Po(s,si-)]=o~ J . a,j . (21) 

From equation (21) it clearly follows that Zala,j re- 
presents the probability contribution to the sign of Ai 
derived from the zero-order contributions to the signs 
of the other structure factors and their products in 
pairs. An analogous conclusion may be drawn from 
examination of the other products which appear in the 
numerator of (18), while the denominator must be 
considered as a normalization factor. We wish to em- 
phasize the fact that formula (18) represents the first 
case in which the probability distribution of a structure 
factor sign is expressed as a function of the sign prob- 
abilities of the other structure factors. We think that 
expression (18) may be rightly denominated a joint  sign 
probability. 

Every product appearing in the denominator of (18) 
is probably positive, as it could be seen from consider- 
ations analogous to those reported above. We may also 
deduce that the larger the relative weight of the pos- 
itive terms, the greater is the self-consistency of the 
whole set of zero-order contributions to the signs; 
therefore, the larger should be the probability of solv- 
ing the structure on purely statistical grounds, as a rule. 

At the very beginning of every structural study of a 
centrosymmetric crystal, no sign is known apart from 
the arbitrary signs of the structure factors of three odd 
reflexions (i.e. whose reciprocal vector H has no rational 
correspondent H/2) linearly independent modulo 2, that 
specify the choice of the origin of the unit cell. In such 
a case, it is not difficult to see that only the first ex- 
pression inside parentheses gives a non-zero contrib- 
ution to the denominator of (18) - for instance, the 
sum Ssjaj must be zero in all its terms, because aj is 
necessarily zero if thej th  reflexion is o d d -  while, in the 
numerator, the first expression inside parentheses gives 
a contribution to the even reflexions, and the second 
expression to the odd reflexions only. This seems to be 
quite logical, because the sign of every even reflexion 
must be independent of the choice of the origin (there- 
fore of the choice of the arbitrary signs), while the 
signs of the odd reflexions depend entirely on this choice. 
Of course, this is no more the case when new signs are 
known, and they are introduced into (18). As an ex- 
ample, we will write in the following the explicit ex- 
pression of P(s  +) for the space group P i ,  when H is 
an even reciprocal vector [see (16) and (18)]" 

P(s+) =½ +½ 

We may now add the following conclusion to the 
preceding matter. Starting from the expression (10) 
for the joint probability distribution of all the signs, 
we have obtained the expression (18) for the probable 
sign of a single structure factor. Careful examination 
of (18) has proved not only that it is fully self-con- 
sistent, but also that it gives new contributions to the 
sign probabilities, which have never been given before, 
at least in an explicit form. We think that this affords 
strong support for the total correctness of the theory. 

(b) It is well known that, in some cases, applying 
probability treatments to the structure factor signs in 
a centrosymmetrical structure, different sets of signs 
give rise to high contributions to the total probability 
P(A1 . . .  Am) [see expression (2)], if only the first terms 
are considered. The choice between these sets must be 
generally made on examining them separately from a 
truly structural viewpoint; for instance, the presence 
or absence of atoms in some special positions, or more 
generally the indications derivable from Fourier syn- 
theses, built up with all the probable sets, are criteria 
frequently employed in the choice of the correct set of 
signs (see e.g. Karle & Karle, 1964). 

In the following, we will discuss a mathematical 
treatment based on the present theory, which should 
allow the most probable set (or sets) of signs to be 
obtained. This method, which may be interpreted as 
an alternative way of utilizing the probability distrib- 
ution (10), is based on the same idea already expressed 
in Theorem I (page 950), the maximization with res- 
pect to the sets of signs being carried out on the 
P(sls2 . . .  s i n )  function. 

Maximization of (10) over all the 2m possible sets of 
signs may be of prohibitive length even with the aid of 
a large computer, if m, or the number of reflexions 
taken into consideration, is of the order of 20 or greater 
[220 > 1 million (l)]. Nevertheless, we will show a proc- 
edure which allows the variation of only a small num- 
ber p of signs, properly selected among the strongest 
structure factors, with the utilization of the partial 
sign probabilities which refer also to the other structure 
factors whose moduli are known. Once these p signs 
are known, it will be easy to derive a large number of 
other structure factor signs [for instance by application 
of (18)]. 

The mathematical procedure is outlined in Appen- 
dix IV. We give in the following the expression (IV, 8) 
in explicit form: 
:~MaxP(s l s2  . . .  sv) 

= Max{L'sj~j + Esjskszatkz + Esjsk~jk 
+ Zsla~aj~ + Zsjskatalel 

+ Ssjct ,~,~m + . . . } ,  (23) 

Th{½IAH](A~I 2 -- 1 )EH(E212-  1)} + E Th{½IAKI(A~c~2- 1)EK(E~/2-  1)} x 
K(#H) 

1 + ETh{½IAKI(A~/2 -  1 )EK(E2/2-  1)}. Th{½IAr~I(A2/2 - 1)Ez(E~/2- 1)} x 
K~L 

x Th{½[AHAK[(A~+mI 2 -  1 ) E n E K ( E ~ + ~ / 2 -  1)} + . . .  

x Th {½[AKAL[(A~K+L)/2 -- 1)EKEL(E~K+L>I 2 -- 1)} + . . .  
(22) 
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where P(s l  . . .  sv) is the sum of the probabilities of 
the set of signs (sl . . .  sv) given by (10) over all pos- 
sible sets of the remaining signs. In the summations 
indicated in (23) the indices which are applied to the 
signs run only from 1 to p, while the other indices run 
from 1 to m, m being the total number of available 
moduli of structure factors; moreover, in any sum- 
mation the indices expressed by different letters must 
always assume different values. It may be seen that 
every index appears an even number of times in every 
product; a~j.g . . .  are the quantities already defined in 
(4') ; c~ij~ . . .  = Th(aij~ . . . ) .  

An important particular case is that in which only 
the contributions of the Sayre terms, which are gener- 
ally very important, are considered. This means that 
from the series under brackets in the probability rel- 
ationship (10), we retain only the summation 2"2; more- 
over, referring for simplicity to the space group P i" 

aij~ = A n A  KA It+KEHEKEH+K (24) 

having assumed that: 

A t - A n ;  A j - A K ;  A k - - A H + K .  

In this case expression (23) reduces to" 

MaxP(sx, sz . . .  sv) = 

= M a x { X s t s ~ s ~ j k  + X s t s ~ k z ~ m *  

+ ZStSjSkSlO~ijnO~lcln* + ~SlSjSkSlSmSnO~ijkO~lmn 
+ Z,S,SjSlcO~,nrO~JrsO~kns 

+ Z, SiSjSkSlSm3nO~iltO~l~lrO~mnsO~trs + . . .  } . (25) 

With the aid of an Olivetti 6001 computer we have ap- 
plied formula (25) to a two-dimensional projection 
having pgg symmetry [(100) projection in the space 
group P2x/C, with four molecules in the unit cell] of 
crystalline trans-anti-trans-anti-trans-perhydrotriphen- 
ylene (C~8H30) obtained by complete hydrogenation 
of triphenylene (Fig. 1). 

The number of signs which could be permuted in all 
possible ways w a s p =  10; only the reflexions with IAI > 
1.8 were considered, so that m was equal to 26. From 
the 210 = 1024 values of the P(sas2 • • • S~o) function, two 
values were sharply greater than the others, and equal 
between themselves. Since the projection had been pre- 
viously solved by other methods, we recognized that the 
real set of signs corresponded to one of the two maxi- 
mum values. 

All the formulae given in this paper are now in 
course of practical application to this structure and to 
other examples in our laboratory. 

APPENDIX I 

The expressions (5) may be derived from the nearly 
gaussian statistical distribution of the structure factor 
products, for example: 

* Note added in proof - It is interesting to note, that these 
terms correspond to the coincidences of the first and of the 
second kind respectively, according to de Vries (1965). 

1 
P[AH(A~/2 - I)]- 

[_ ½ {A.(A~2- 1)32- En(E~2- 1)}2 ] × e x p  

1 2 2 l = ]/~_exp [ -  A R ( A H / 2 -  1)2 +4 EH(E2/2 - -  . . . . . . . .  1)z_, 

× e x P [ ½ A n ( A ~ / 2 -  1)EH(E2/2 - 1)], (I-l) 

in which P represents the probability distribution of 
the product [AH. (A2/2 - 1)] and D 2 is the correspond- 
ing mean square deviation when the atoms are allowed 
to move freely throughout the unit cell. If the atoms 
have similar weights and their number is sufficiently 
large it follows that D2_~2 (see also Appendix II). In 
the last member of (I-l) only the second exponential 
depends on the sign of An; therefore" 

P(sign of An) 
= K.  exp [½An(A2/2- 1 ) E n ( E 2 / 2 -  1)] (1-2) 

The expressions (5) are of the same type as (I-2); 
now, (I-2) does not suggest anything about the distri- 
bution of the values AH and An/2, since it has lost the 
first exponential in the last member of (I-l). Therefore, 
both (5) and (I-2) are to be interpreted merely as sign 
probability distributions, the moduli of An and An/2 
being known. 

A P P E N D I X  II 

We will prove in the following the validity of expression 
(13) under the hypotheses that the number of the inde- 
pendent atoms is large and that their weights are ap- 
proximately the same. 

Let us first recall the algebraic form of the Hermite 
polynomials of the lowest orders: 

H0(z)=l ;  H l ( z ) = z ;  H 2 ( z ) = z  2 -  1; 
H 3 ( z ) = z 3 - 3 z ;  H 4 ( z ) = z 4 - 6 z Z + 3 ;  . . .  (II-1) 

More generally: 

H v ( z ) ] = ( _ l ) v e x p Z  2 d ,  ( _~) 
2 " dzv e x p -  . (II-2) 

Confining our attention to the space group P i ,  the 
general expression of En(xl, x2 . . .  xn) is: 

E n ( x 1 ,  X2 . . .  Xn)  
n/2 n/2 

= 2 2; ¢i(H) cos 2~rH. x~ = 2 X ~i(H). (II-3) 
i=1 i=1 

Fig. 1. Side and perspective view of 
trans-anti-trans-anti-trans-perhydrotriphenylene. 
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The product H2ol(EH)Hp2(EK)H2~3(EL ) . . .  may then be 
expressed as a proper summation of terms of the kind" 

/']~1~213 . . .  i t  

= 2t~ i l (n l )~ iz (H2)~13(n3) . . .  ~u (Ht ) ,  (11-4) 

where H~, H2, H3 may correspond either to H, or to 
K, or to L . . .  If every term of the above kind may be 
considered as statistically independent of the others, 
then the central-limit theorem (Cram6r, 1946) may be 
applied" it states that the sum of a large number, N, 
of independent variables r/j with mean value ~j and 
mean square deviation a~, is normally distributed about 

N N 
2 X ~j with mean square deviation D 2 = Z ~j. 

j = l  j = l  

We have limited ourselves to the consideration of 
two of the simplest products of the kind H~I(EH)Hp2 

• ( E K ) H r 3 ( E L ) . . .  with a non-zero average value, be- 
cause we are interested only in them. We have proved 
that, if the atoms have similar weights, the total covari- 
ance of r/q~ 2 ... is in these cases of the order of 1/n, and 
therefore negligible for large n (number of atoms in the 
cell). By induction, we have assumed that the hypothe- 
sis of independence among r/qz2.., may be held for every 
product of the above kind, and also for every space 
group, under the same conditions of similar weights for 
all the atoms and of large n. We will report in the fol- 
lowing only the results of our calculations. 

The mean square deviation D2(Xr/0 of every sum of 
functions r/~(x~ . . .  xn) of the n variables under con- 
sideration is given by: 

D2(X~/0 = (Xtl,) 2 - (Xt/l) 2 = Z(q~ - ¢1~) + 2ZXtl*tlJ 
i < j  

= D2(Xrl,) + Cov(r/,r/l ) . (II-5) 

In the third member of (II-5) we have expressed 
D 2 ( Z r / f )  a s  the sum of Do z (Xr/,), which is the mean square 
deviation of St/, when the separate terms are indepen- 
dent, and of the total covariance between these terms. 
We have evaluated both D 2 and D20 for the following 
products '  

(I) = H I ( E H ) .  H2(EB/2) = EH(E212 - 1); 

(II) = HI(EH)HI (EK)HI (EH+K)=EHEKEH+K (11-6) 
thus obtaining: 

D 2 ( I ) = 2 + 5 ( 2 ~  (0~) 2 - 3  ~ ~0 4 - 1 1  ~ ~0 6 
i=1 i=1 i=1 

D~(I) = 2 +( _~ ,,~)~- 3 ~ , 4 _  3 _~ ,,~. (II-7) 
i=1  i=1  i=1 

Total covariance = D2(I) - Do2(I) = 4(X~0~) 2 - 8X~06 = 

4 ( 2 )  
(for n identical atoms) n 1 - ; 

D2(II) = 1 + 3( 2~ e~)2_ 7 ~ ~6 
i=1  i=1  

Dz(II) = 1 - 2~ (0 6 . (II-8) 
i = I  

Total covariance = 3(~Fqgt3)2 - 6Xtp~ = (for n identical 

atoms) n 

Therefore, the total covariance is of the order of 
1/n in both cases. As a conclusion, we may assume that, 
under the hypotheses stated at the beginning of this 
Appendix, the central limit theorem holds for every pro- 
duct of the type H~I(E1). H~2(E2) . . .  H2om(Em) which 
will be therefore assumed to be normally distributed 
around its mean value. 

To evaluate now the mean square deviation of the 
above products, let us first recall the following results 
(see Bertaut, 1955), valid for every space group: 

. . . . . . . . .  

E~m=l'3"5 . . .  ( 2 m - 1 ) + O ( n - 1 ) ;  E2nm+l=0 (11-9) 

where O(n -1) means terms of the order of magnitude of 
H-1 .  

Remembering (II-1), (II-2) and (II-9) we may easily 

recognize that H m ( E O  is zero or of the order of magni- 
tude of n -1, while" 

H ~ E i )  =p, !  + R ( n - O ( p , > O ) .  (II-10) 

Considering now the mean value x., HFg2m~2n.L.,K . . . E2L r and 
neglecting terms in n -~, it can be shown that" 

E2_H m . E2Kn . . . E 2r  = E 2 H  m . E 2 K  n . . .  E 2 L  r . (II-11) 

This allows us to write, with the same approximations, 
remembering that  HZp(z) is a polynomial containing 
only even powers of z" 

H21(E1)H2pz(E2) . . .  H2m(Em)= H21(Ei -) 

×H,~2(E2) . . .  H,~m(Em)_~pl!p2! . . .  pro! (II-12) 

The largest mean value of H~I(E1 ) . . .  H~m(Em) is of 
the order of n -~, and is reached in the case of the third- 
order products E H .  ( E ~ / 2 - I )  and E H E K E H + K .  W e  

may therefore conclude that:  

DZ[H2ox(E1)H2o2(E2) . . .  H~m(Em)] 

2 2 . . .  H2pm(Em) = nvl(Ea)Hv2(E2 ) 

- H~I(EI)H~2(E2) . . .  H~m(Em)~-PllP2! . . .  Pro! 
(II-13) 

We may point our here that formulae (II-7) and (11-8) 
are special cases of (II-13), since: 

3 2 [HI(EH). H2(EH/2)] = D 2 [EH.  (E 2/2 -- 1)] 
_~2(=1!2!) (11-14) 

D2[HI(EH) . HI(EK) . Ha(EH+K)] 

= D 2 (EHEI,:EH+K) -- 1 ( =  1 ! 1 ! 1 !). (II- 15) 
From all the above, on the assumption of neglecting 
terms in n -1, we have proved expression (13), in which 
the observed set of structure factors has been substi- 
tuted for the general set of calculated structure factors. 

APPENDIX m 

We will prove in the following that the quantity S{s~} 
[see (4)] is at least of the order of 2 m, where m is the 
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number of structure factors under consideration, if 
{s~} corresponds to the correct set of signs. 

Let us start by writing the expression (2) in the fol- 
lowing way: 

P(A1 ,  X z . . .  Am)=([/~2-~) -m exp [-½(X 2+ . . .  +X2m)] 

X S(S1 ,  S 2 . . .  S in ;  [All, [Azl, . . .  [Am[). ( I I I - 1 )  

In (III-1) we have explicitly indicated the dependence 
of S on both the moduli and the signs of the structure 
factors. Bertaut (1955) has shown that the above ma- 
thematical form of P ( A i A 2  . . .  Am)  is normalized in 
the domain of the A~ variables, i.e. : 

I I  " '"  I ~ :  P ( A b  A z ' " A m ) d A l d A 2  " "  d A m = I  " 

(111-2) 

Let us now remember that: 

×exp [-½(A~+ . . .  +A~)]dA~ . . .  d A m =  1 . (III-3) 

Comparison of expressions (III-1), (III-2) and (III-3) 
shows that the average value of S ( S l , . . .  sm; I A l l . . .  lAin I) 
over the distribution function ([/~--~)-m exp [-½(A~+ 
. . .  +A~)] is equal to 1. 

First, let us assume that the average value of S for 
any distribution of IA~I is constant, and therefore equal 
to unity everywhere. Since there are 2 m sign distribu- 
tions for every set of IAiI, we may write: 

.S S(s l  . . .  sin; IAll . . .  IAml)=2m. (III-4) 
81,6"2 . . .  S m  = + , -  

N e g l e c t i n g  the cases of possible homometry, we have 
already seen (see page 950) that S is in general different 
from zero only for one set of signs, for a given set of 
]A,I. This means that, indicating by (gl, s2 . . .  gin) the 
set of signs which is consistent with a possible distri- 
bution of atoms inside the unit cell: 

S(gl, ~2 . . .  gin; IAll . . .  I A m l ) = 2  m • (111-5) 

However, it is certainly not correct to assume that S is 
constant throughout all possible distributions of IA,I. 
In fact, it is intuitive that there may be many hypothet- 
ical distributions of IA~I which do not correspond to 
any atomic distribution; in these cases S will be zero 
for any set of signs. But since the average value of S 

over all the sign and moduli distributions must be 
unity, the following conclusion may be drawn: the value 
given by (11I-5) is a lower limit for S, when both signs 
and moduli of A, correspond to the real structure. 

A P P E N D I X  I V  

Let us first write down the following identity: 

exp ( s~ .  a ) = C h a + s a  Sha=Cha( l+saTha)  (IV-l) 

where s~ is a sign, or a number which may assume the 
two values + 1 or - 1 .  Remembering (IV-l) and the 

notation c~ty...i=Th(a,~...1), expression (10) may be 
written in the following way" 

P(Sl ,  s2 . . .  s m ) = K ,  e.  [/7 exp (s, a0] 
x [H exp (s,s~s~,a,jg)][/7 exp (sis:taxi)] . . .  

= K. e. [H Chin] [/7 Cha,~e] [/7 Chmi] . . .  [/7(1 + s~,)] 
x [H(1 + s i s ~ s ~ ) ] [ H ( 1  + s ~ s ~ ) ]  . . .  0V-2) 

Indicating by R (which must necessarily be > 0) the 
total product of all the factors that do not depend on 
the signs, in the last member of (IV-2), and developing 
the other products, we have" 

P(s~, Sz . . .  Sm)=/~{1 +£'s~c~+ S s~syseo~x 
i # j ~ k  

+ ,S slsf~i~ + S s t s ~ t ~  + S sts~s~cc~i~ + . . .  } .  
i # j  i # j  i # j  

(iv-3) 
Now let us evaluate the sum of the above probabilities, 
considering separately the two cases (s~ = + 1) and (s~ = 
- 1), over all the permutations of the other signs except 
(sls2 . . .  sv) ( p  < i) that will be held fixed. We shall thus 
obtain the total probability P v ( s ~ )  of A~ being positive 
or negative, when the first p signs are fixed. The result 
may be expressed in the following form" 

Pv(s?) 
= ,~,~ . . .  Z P(S l ,  s2 . . .  S~-l, 

( $ p + l  • • • S i - 1 ,  St+I • • • S m  = + , - - )  

~ , S t + l , . . . S i n )  = 2m-v-lR( + A1 + A 2 ( s 1  . . .  sv) 

+ Bx + Bz(Sl . . .  sv)] , (IV-4) 

where A1 and B1 do not depend on the signs ( S l S z . . .  sv).  
The explicit forms of A1, A2, B1 and Bz are: 

A1 = c~i + ~rctj~ij + 27~j~kctt~k + Zctj~ij~ + Z~fqkc~tk + • • • 

A z = ~rsjoqo~j + ,Ssj~ij + ~r s~sko~tj~ +,Ssjo~oqjlc + . . .  

B1 = 1 + Zo9o~o9~ +,So~jko~kzo~:t + ZO~j~zO~m + • • • 

B2 =-rs j~j  + , rs j sesz~m + Ssjsk~j~ + Zsjc¢ko~j~ + . . .  
(IV-5) 

In all the summations reported in (IV-5) it is tacitly 
assumed that two different indices can never be given 
identical numbers. Moreover, the indices which are 
attributed to the signs may vary only from 1 to p, 
while the i index is fixed (it corresponds to the structure 
factor under investigation). The other indices run from 
1 tom.  

From (IV-4) we may evaluate P v ( s + ) - P v ( s F ) ,  by 

determining/~ so that Pv(s~+)+ Pv(C)= 1. We obtain: 

Aa + A2(sl, s2 . . .  sv)  (IV-6) 
P v ( s + ) - P v ( s ~ )  = B I +  Bz(si,  sz . . .  sv)  " 

(IV-6) is reported in explicit form in expression (18) 
[P~(s0 ~ ~(s0]. 

Without specifying the value of/~, the expression of 
P v ( s + ) +  Pv ( sT ) ,  from (IV-4), is: 

P r (S+)+Pr (sF)=2  m-~ • g .  {BI+B2(s1 . . .  s:o)} (IV-7) 

We have thus obtained the total probability per- 
taining to the set (sl . . .  sv)  over all the permutations 
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of  the other signs. Maximizat ion  of  (IV-7) over all the 
possible values of  (sl . . .  s~0), assuming /(" to have a 
fixed value, will give the most probable  set of  these 
signs. (IV-7) gives rise to expression (23); in fact, since 
B1 does not depend on any sign, it clearly follows that:  

Max P(sl . . .  s ~ ) = M a x  Bz(sl . . .  sp) . (IV-8) 

Remember ing  the last equation in (IV-5), we may 
easily see that  (23) and (IV-8) are equivalent. 
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Intrinsic and Systematic Multiple Diffraction 
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The geometric conditions under which intrinsic multiple diffraction can occur have been examined for 
the single-crystal orienter technique in the equatorial plane, and for the precession camera technique. 
The conditions for the single-crystal orienter are the same that have already been found for normal 
beam and equi-inclination techniques by Zachariasen, and in part by Fankuchen and co-workers. If a 
crystal is oriented with a symmetry axis parallel to, or a symmetry plane normal to, the rotation a~is 
(~ axis) then intrinsic multiple diffraction will occur. The consequences of the conditions are different, 
however. For the normal beam and equi-inclination cases reflections on nonzero layer lines will be 
recorded under conditions of double and triple diffraction, respectively, and the situation is both in- 
trinsic and systematic. For the single-crystal orienter the situation is intrinsic but not always systematic. 
Depending both on the crystal symmetry and the indices of the reflections the multiplicities may be 
triple, quintuple, septuple, 11-fold, or 15-fold. For the precession camera the situation is not intrinsic. 
However, if a crystal is again oriented with a symmetry axis parallel to, or a symmetry plane normal 
to, the rotation axis (in this case the spindle axis) a systematic case can be created. If the precession 
angle # is set at # = cos-l(d*/2), where d* is the reciprocal lattice spacing from the zero level to an upper 
level, then all reflections on the zero level are recorded under conditions of triple diffraction. The 
possibilities for nonsystematic cases with the precession camera are more interesting. The conditions 
for multiple diffraction of selected groups of zero level reflections can be created or avoided at will by 
the choice of 2, regardless of crystal symmetry or crystal orientation. In principle this should permit 
direct observation of the effects of multiple diffraction on intensities. 

Zachar iasen (1965) has recently emphasized that  most  
intensity measurements  reported in the literature, and 
used for structure determination,  have been made under 
condit ions of multiple diffraction. For  normal  beam 
techniques (rotating crystal, oscillating crystal, or Weis- 
senberg) all reflections on nonzero layer lines are ob- 
tained under  condit ions of  double diffraction if  a cry- 
stal is oriented with a symmetry axis parallel to, or a 
symmetry  plane normal  to, the rotation axis*. For  the 

* Depending on the Bravais lattice there are two possibili- 
ties: Either all reflections on every nonzero layer line, or all 
reflections on every third layer line, will be subject to double 
diffraction. 

equi-inclination Weissenberg technique all reflections 
on nonzero layer lines are obtained under  conditions 
of  triple diffraction if  a crystal is oriented as above. t  
Zachariasen also illustrated two special cases where 
certain zero layer line reflections are subject to triple 
or quintuple diffraction when a fourfold or sixfold 
symmetry axis is normal  to the rotat ion axis. In ad- 
dition Zachariasen solved the intensity equations for 
double, triple, and quintuple diffraction for a plane, 

I" Depending on the Bravais lattice there are three possibili- 
ties: All reflections either on every nonzero layer line, or on 
every second layer line, or on every third layer line, will be 
subject to triple diffraction. 


